What’s on my lab bench?

Most people have a desk as a place of work. I’m lucky enough to have three workspaces as a chemist: my desk, my lab bench, and my fume hood, all for different aspects of chemistry research. Today I’m going to give you a tour around my lab bench!

labelled lab bench.png
Picture caption: Fiona’s busy lab bench with different items labeled, from the sink to the sample vials!

My lab bench is used to carry out low-risk tasks involving my chemical samples. Most of the work I do when handling and manipulating my reactions is carried out in a fume hood to reduce my exposure to them but small analytical tests and sample preparation can b carried out on a bench – unless my sample is particularly smelly which thankfully not many of my compounds are!

I share a sink with another chemist in my lab where we wash up our glassware. We’re a bit like a student flat in that neither of us like putting the glassware away in the cupboards so take stuff directly from the drying rack which can turn into a mountain of conical flasks and beakers sometimes!

While I use an electronic lab book for my final write-ups, I keep a rough note of what I’m doing for each experiment in these blue and while notebooks and transfer it to the ELN at the end of the experiment. If I had to grab one thing in the event of a fire, it would be these notebooks as everything else I do is digitally backed up!

I keep final products in these sample vials before transferring them to smaller ones for archive storage about once a quarter. I draw the chemical structure on the yellow circular labels to help me find samples quickly. I try to keep my samples in chronological order but it doesn’t always happen so you’ll often find me hovering over these boxes trying to find vial such and such.

Although the picture doesn’t show it too well, I have to boxes of glass pipettes on my side of the bench, individual disposable glass droppers. I have a rubber atomiser that I attach to them when I need to transfer small quantities of liquid between flasks etc. and then the glass pipette gets recycled. We have two lengths of pipette and I seem to get through the shorter ones a lot quicker than the longer ones.

The tip-ex isn’t actually for correcting written mistakes in my notebooks – I tend to just scribble. I actually use it to mark sample lids so I can differentiate them as my own from my colleagues when using shared equipment. Our group has to use black lids for our NMR tubes so I found it a simple way to identify my samples from the dozens than go on the NMR instrument carousel.

I use a ruler for drawing straight lines on my TLC plates and for measuring the distance between spots once I’ve run TLC experiments (see my How do I know I’ve made the right molecule post).

The small tubes in the little beaker are how we store samples long term. They’re obviously a lot smaller than the glass vials and we typically have less than 0.1 g of a sample left after using what we need for future chemistry. We also use these tubes for transporting samples because they have individual bar codes on them. These are six compounds that I’ve taken out of archive storage for my colleague in biology to come to get whenever she needs them.

The conical flask on my desk contains empty NMR tubes, long skinny glass tubes used to prepare a sample for a particular type of analysis that investigates the magnetic character of the compounds – again see my previous post for more detail. The tubes are capped with the black lids I cover in Tipex.

I don’t keep many chemicals on my desk but these two are for a public engagement activity I’m doing with schools soon and so because they weren’t bought using the group’s research budget, need to be stored separately from the other chemicals I use, which are typically stored under my fume hood or in one of our several filing cabinets.

A calculator is a chemist’s best friend for double checking sample dilution factors and scaling reactions up to bigger quantities (like doubling a recipe). My electronic lab book does a lot of calculations for me but there are always some that need to be done manually like converting concentrations units from % to molar etc.

I hold on to my NMR samples until I’ve definitely got everything I need to write-up an experiment. Cleaning these tubes out isn’t the most fun job in the world so I tend to wait until I have a lot of tubes to clean before the repetitive task of rinsing them out.

My colleague and I share a number of things on our bench like sample vials and empty plastic columns for purification. We try to keep them topped up for each other.

Every chemist needs gloves for handling chemicals. I try to not get through more than a couple of pairs of gloves a day having mastered the technique of removing them in such a way that they can be worn again if I know I’ve been particularly careful and not got much on them.

My green tray has samples ready for being archived. I got this from a colleague who was leaving and it’s the perfect size for storing out mini sample vials. Scientists are a bit like vultures when they know there’s a free for all during a lab clearout or someone moves job, we become quite territorial about our pieces of lab kit.

My cardboard box has random bits and pieces in it like pencils and stickers for my lab vials.

I also have a mountain of plastic rings for storing round-bottomed flasks – spherical pieces of glassware that as you can tell by the name don’t stand up very well on their own.

Sometimes I get deliveries in the post in boxes that I bring into the lab. This tiny box was the perfect size for storing my TLC plates.

The laminated sheets are for writing the reaction schemes for what’s going on in my hood if I’m leaving a reaction on overnight. It allows colleagues and security to check a reaction is running at the temperature it is supposed to and hasn’t randomly heated up or cooled down overnight.

Lastly comes my vacuum pump which is attached to my rotary evaporator. My rotary evaporator, or “Buchi” as they’re named after one particular brand that makes them, is a bit like a kettle.  Attach round-bottomed flasks to it and boil off liquid solvents that I’ve dispersed my reaction in. The vacuum pump allows me to boil te solvents off at much lower temperatures than usual.

You may know about the phenomenon where water boils at a lower temperature at the top of Everest due to the reduced air pressure. My Buchi takes this to the nth degree by creating a vacuum and can actually boil water off at 40 °C! The samples sit in the water bath which is warmed to my desired temperature and rotates to maximise even distribution and mixing of my reaction mixture while also creating a thin film of solvent which then evaporates more easily.

The shelf above my bench contains frequently used chemicals for reaction work-ups/purifications. It includes various acids, bases, substances for removing water, stuff for preparing columns and my NMR solvents. We also have parafilm, a bit like clingfilm, used to seal vials and chemical bottles to stop samples or reagents from going off.

I hope you’ve enjoyed my lab bench tour. Stay tuned for future posts about my desk and fume hood.

What’s your working space like? Let me know in the comment below.

Reflections on second year

shallow focus photography of yellow star lanterns
Photo by 嘉淇 徐 on Pexels.com

This is my last week in the lab of 2018. It’s only really four days because we’re having our group’s Christmas party on Friday (laser quest and pub lunch) and then I’m at a conference on Monday before taking the rest of the week off before Christmas.

Towards the end of first year I wrote this post about how I thought first year had gone and I listed 5 things I wanted to change. In this post I’m going to see how I did with those goals and create 5 new goals for third year.

  1. Read more papers – I managed this one quite well. In first year I sporadically printed and read papers but this year I got organised and set up an RSS feed and have been pretty good at checking in with it most days – perhaps a little too often with my “inbox zero” tendencies. I use Mendeley to save anything I come across that might be useful for my project. I tried #365papers  and failed miserably though, partly due to me losing the spreadsheet I was keeping track of papers on in an IT nightmare but also me just not getting into a habit.
  2. Make more compounds – I certainly achieved this one. First year involved trying a lot of new chemistry and at the start of this year I optimised a lot of that chemistry making it far easier to get final compounds out. For example, one set of molecules I made last year took 8-9 separate reactions to get there and now with a small change to the chemical structure that I’ve learned doesn’t kill the activity of the drug in most cases, I can get to those compounds in 2-3 steps.
  3. Be more selective in the seminars I attend – In first year I felt I had to go to every single seminar to widen my knowledge but as you specialise you learn what interests you and what a good use of your time is. I still go to the odd seminar outside of my research area so I’m not in too much of a rabbit hole, but I certainly feel like I’ve been using my time a bit better when it comes to seminars.
  4. Attend more conferences – having only been to one conference in first year, I went to a few in 2018 – and still have one to go next week! I started the year by attending the Genome Stability Network Meeting in Cambridge in January, in March I went to the RSC-BMCS Mastering MedChem conference at University of Strathclyde in Glasgow, then RSC/SCI Kinase 2018 in May, again in Cambridge, and still have the RSC Biotechnology Group Chemical Tools in Systems Biology in London a week today.
  5. Use this blog more – this one I’ve technically achieved in the last month or so. Most of the year I found myself “procrasti-blogging” sporadically blogging if I was taking part in a science writing course where an assignment involved writing a blog or the Google Doodle of the day was linked to chemistry. Now I’m making a concerted effort to post regularly on here and also on my dedicated Instagram account.

I think I’ve done quite well in meeting all of those goals. They were fairly realistic goals without quantification. Now here are my goals for third year:

  1. Keep using this blog – weekly blog posts, a couple of Instagram stories/posts a week. Over Christmas I’m going to make a longer term plan for content and schedule as many posts as I can so it doesn’t take up too much of my time during term time. Let me know if there’s anything in particular you’d like to see.
  2. Get the desk/bench balance right – I continue to struggle with staying at my desk more often than being in the lab. Often I choose reading, agonising over lab book/write-up and writing off lab tasks to “tomorrow” that could be done today rather than making stuff in the lab. If anyone has any tips about this please let me know in the comments.
  3. Get something published – I have something to show for my research and I really want to get some of it published in a medicinal journal to show alongside my thesis at the end of the PhD. I’m waiting for some long-promised data from a collaborator which will help supplement my work but I’ve agreed with my supervisor that in February I need to start writing papers for publication without that research.
  4. Speak at a conference – similar to above, I have a sufficient story to tell that I would love to give a talk about just once about my research at a conference rather than just standing beside a research poster at said conferences where people may or may not come over to hear about it. I’d also like to go to a conference outside of the UK because travel is one of the perks of being in research.
  5. Finish the practical side of the project well – I plan to spend another year in the lab before writing up. I have until March 2020 technically but I’m leaving those three months as a “backstop” of sorts – #relevant. I have in my head I’d like to get to 100 final compounds for my thesis (I’m about two thirds of the way there so it seems tangible) and I’d also like to spend some time in the biology labs my group have testing some of those compounds.

Hopefully this time next year I’ll be writing a similar post about how well I did in achieving my third year goals. It’s crazy it’s got to my last year in lab already!

Did you make any goals/resolutions for 2018? Did you achieve them? If not, are you going to reattempt them in 2019? Let me know in the comments below.

My Placement Year in Switzerland

Increasingly, universities are offering integrated masters science degrees over bachelor degrees. These normally include an additional year of study and/or a placement year in industry or an academic research group. In this post I’ll tell you about the science I did on my placement in Switzerland and how it is linked to a major drug approval that happened a few months ago.

During my MChem placement year (2014/2015) at University of Strathclyde I worked as a Research and Development (R&D) intern for Corden Pharma Switzerland (CPS). They are a Contract Manufacturing Company of different Active Pharmaceutical Ingredients (APIs), Drug Products and Packaging Services. This means they produce various chemical products for pharmaceutical application for lots of different company clients.

CPSlogo
Picture caption: Corden Pharma logo with slogan “Experts taking care” Source: cordenpharma.com

The APIs produced at the CPS facility fall into a few categories: carbohydrates, lipids, peptides and other small molecules. At the start of my year there I worked on a short carbohydrate project where I produced a sugar-like compound for a big pharma client.

I spent the rest of my time working on a small molecule project for a slightly smaller company client. As part of a team of a few chemists I helped to make a large lipid-like molecule that helps deliver corrective pieces of nucleic acid into cells to treat genetically-linked diseases. This type of treatment is known as RNA interference (RNAi).

You may have heard of DNA, deoxyribose nucleic acid, a long double stranded molecule made up of individual nucleotides that contain the instruction manual for everything in our cells. There is another type of nucleic acid in the body called RNA, ribose nucleic acid. It possesses some structural differences to DNA such as the type of sugars and bases in the molecule and it exists as a single strand instead of a double strand.

DNA RNA
Picture caption: An partially unwound DNA molecule interacting with a single strand of mRNA. Source: Microsoft clipart

When a cell wants to carry out a particular function, the piece of DNA that codes for the protein that carries out that job is unwound by helicase enzymes. A temporary copy of that portion of DNA is made by RNA. This process is known as transcription.

This newly formed “messenger RNA” (mRNA) leaves the cell nucleus – the central region of the cell where DNA is stored – and travels to a ribosome that reads the instructions from the mRNA and builds the desired protein out of amino acids. Translation is the name given to this process.

protein translation
Picture caption: A green large green ribosome protein interacting with the RNA strand and building a new protein molecule. Blue tRNA molecules bring individual amino acids to the ribosome for building the protein. Source: clipart-library.com

But what if the protein being coded for is a harmful protein that leads to a disease symptom? The theory behind RNAi is that you can send foreign copies of RNA into cells to tell a ribosome to stop producing a particular protein.

These RNAs can tell the ribosome to stop making protein because they are complementary (similar in structure) to the original RNAs and so they bind together like a zip. This so-called interference could be used to treat diseases that are known to be caused by certain genes. Alnylam Pharmaceuticals have a great video that explains the science here.

RNAi
Picture caption: schematic summarising RNAi prcoess with natural blue mRNA and synthetic green small interfering RNA in moving around the cells. The siRNAs interact with the naturally produced mRNA leading to degradation of the mRNA. Source: the-scientist.com

RNAi won the 2006 Nobel Prize in Physiology/Medicine. It was awarded to Andrew Z. Fire and Craig C. Mello for successfully silencing a muscle gene in roundworms by injecting complementary RNA strands.

RNAi roundowrms
Picture caption: comparison of three green roundworms before and after treatment by RNA. Source: nobelprize.org

Their work showed that RNAi exists naturally in the body to regulate production of all proteins and can be done synthetically. The technique is now used by biologists around the world to shut down certain genes in cells and see the effect that it has. Researchers have also been trying to utilise it for medical use by giving patients complementary RNAs for disease-relevant proteins.

However, the body is usually very good at knowing where things should be in the body so it doesn’t expect to find bits of RNA outside of cells, e.g. in the bloodstream where most drugs end up.

The molecule I helped to make on my project allowed the attachment of these corrective RNAs to a big lipid. These big lipids then form nanoparticles (tiny bubbles) around the RNAs that help smuggle the RNAs across the cell membrane and into the cell where they can interact with ribosomes and shut down the production of harmful proteins.

I’m not allowed to tell you specifically how I made the molecule or what it looks like due to the confidentiality agreement I signed at the start of my placement year but it was wonderful to hear in August that the first RNAi therapy using this sort of chemistry was approved by the US Food and Drug Administration (FDA).

The treatment that was approved is called Patisiran (marketed as Onpattro by Alnylam Pharmaceuticals who developed it) and contains RNA strands that halt the formation of a protein called transthyretin. Transthyretin production leads to the symptoms of a genetic disorder called hereditary transthyretin (hATTR) amyloidosis. This is a rare disease where some 50,000 patients a year experience nerve damage due to the clumping of overproduced transthyretin.

Alnylam’s website says 51% of patients treated with Onpattro “experienced improvement in quality of life at 18 months” compared to 10% of patients who were treated with a placebo. This first-in-line treatment means that now one disease can be safely treated this way it might be possible to treat other genetically-linked diseases using RNAi.

It was really cool to see the science my project being approved as a new type of treatment which will hopefully pave the way for future RNAi therapies. While at times I was frustrated with the tricky chemistry I was doing on placement, I’ve been reminded by this approval that sometimes the goal of helping patients is met, which makes it worthwhile.

fiona matterhorn
Picture caption: Fiona in winter clothing standing in front of the famous triangular shaped Matterhorn mountain in snowy Zermatt, Switzerland.

Outside of the lab I enjoyed sampling different Swiss cheese and chocolate and travelling around the country on their first-class public transport system as well as further afield. While the country is very expensive, it’s a beautiful place to live with the Alps and picturesque old towns. I enjoyed being back last weekend and showing my friend Emily around – check out my Instagram for a post about her job as a consultant process engineer.

I learned a lot of chemistry (and Swiss German) on my placement and would thoroughly recommend taking any opportunity to gain industrial experience during your degree to give a taste of what life as a scientist is like.

Have you come across RNAi? Does it seem like a viable way to treat diseases? Have you visited Switzerland? Let me know in the comments below.

I kept a photo-a-day blog on blipfoto during my time in Switzerland and wrote a few blog posts about living en Suisse, one of which was reposted on globalgraduates.com.

 

Chemistry PhD: A Day in the Life

I find people’s routines really interesting. Everybody’s different. Some people are early birds while others are night owls. Some people work long hours and others manage to fit a lot of work into a short period of time. In this post I chat about what a typical day looks like for me and the various things I get involved with both inside and outside of the lab as a PhD student.

IMG_3518
Picture caption: Fiona in a lab coat taking a selfie in the chemistry lab.

Day in the life:

0630: My alarm goes off. More often than not I press the snooze button for a little while.

0630-0700: If I’m sufficiently awake I go for a run then get ready for uni. I’m currently training for the Brighton Half Marathon at the end of February next year.

0815: Get the bus to campus.

0845-0900: Depending on how the buses are, get into the office, check e-mail and RSS feeds.

MORNING: I spend the morning either at my desk doing data analysis or in the lab running experiments.

1200: I eat lunch with colleagues. I usually bring a packed lunch but occasionally I treat myself to lunch at one of the university cafes.

AFTERNOON: I usually have a bit of an energy slump after lunch so I switch to low-brain-power tasks e.g. running TLCs in the lab or writing up analysis.

1600: I usually kick back into gear at this time of the day so I will have a burst of activity in the lab or at my desk.

1800-1830: leave office

Evenings: I don’t tend to do work on my PhD when I’m not on campus. In the evenings I’m either chilling at home, going along to something at my church or going to review something at the theatre.

***

This is what a typical day where I have nothing in the calendar looks like. There are other things that pop up throughout the week which mixes things up. I generally prefer days when I have a meeting or two in the calendar. This is because it makes me more productive with my time because in my head I’m thinking “I have to get this done by X because of Y”. Below are some other things that are typical of chemistry PhD life outside of doing experiments:

Cleaning the Lab

balance
Picture caption: a set of super sensitive scales, known as a balance, reading 0.0000 g.

While everyone in my lab has responsibility for their own lab space, we have a rota for cleaning the communal areas of the lab. This involves checking our balances don’t have residual chemicals on them; cleaning up the TLC plate area; and checking our communal rotary evaporator for removing toxic/smelly substances has been cleaned.

Solvent Run

In a lab capable of up to nine chemists working in it at once, we get through a lot of chemicals, especially solvents! Solvents are the liquids we run our reactions in. Sometimes its water but its usually an organic solvent such as dichloromethane, tetrahydrofuan or an alcohol. We take it in turns to check our communal solvent stocks in the lab and top them up from the school’s central store as needed.

IMG_7474
Picture caption: multiple plastic bottles with different coloured lids containing different solvents.

Supervisor 1-2-1s

About once a week I sit down with my lab supervisor to review the chemistry and other work I’ve done, troubleshoot any problems I’m having and I propose what I plan to do next. About once a month I give a slightly “bigger picture” version of this project update to my main PhD supervisor. This helps me to build up a record of what I do on a weekly/monthly basis and gain input on my project from people with more experience than me.

Teaching

PhD students can undertake casual work with at my university to earn extra money. So far I have demonstrated in undergraduate labs – walk around and make sure everyone is carrying out their experiments safely and helping with any issues they have; invigilated exams; marked exam papers and taught tutorials and workshops for undergraduate chemistry/life science courses.

Attend lectures/seminars

As I am undertaking a research postgraduate degree instead of a taught one I don’t have any mandatory classes as part of my course. That doesn’t mean I can’t take advantage of the learning that’s happening around me on campus. Last year I attended a module called Fundamental Cancer Biology which helped me to consolidate what I’d learned about the biology side of cancer from my own personal reading which I found very helpful.

The life science school puts on a number of seminars that are mainly geared towards postgraduate students and research staff. While the term “seminar” can mean different things, in Sussex’s School of Life Science this session is usually an hour long where an in-house/invited speaker talks for about 45 minutes about their research followed by questions. It tends to be a very applied talk with only general concepts covered in the first few minutes. I enjoy seminars because you get the chance to learn about all kinds of research outside of your own.

Conferences

A few times a year I go to conferences. These are 1-3 day events where researchers in academia/industry meet in a specific location to hear talks about research around a specific area. I’ve been to conferences about medicinal chemistry, genome stability, the specific class of drug target I’m working on, and more! There’s a conference for everyone.

KMtalk.JPG
Picture: Fiona giving a presentation at the RSC Kinase 2018 conference. A single slide summarises my PhD project with diagrams of chemical structures and biological processes.

While I haven’t had the chance to go abroad yet I’ve been to conferences on my own campus and in Glasgow, Cambridge and London so far. I sometimes take a poster summarising my research and am now applying to talk at some conferences now that I’m later on in my PhD. They’re a good opportunity to network and catch-up with people from my field of research.

Public Engagement

It is becoming increasingly common that researchers are required to demonstrate the impact their research has on society by communicating that research to the public. I’ll do a separate post about the various public engagement activities I’ve been involved in another time but very briefly, from time to time I take part in science fairs, schools events at the university and sometimes go into schools to talk about chemistry.

liquidnitrogenPACA
Picture caption: Fiona pouring liquid nitrogen onto the floor, creating a large fog, as part of a public engagement show about chemistry at a school

***

Juggling these things requires a lot of time management which I have varying levels of success at doing. I like that there’s a lot of variety in my work but primarily the goal of my PhD is to spend time in a lab making molecules. The other things give me a change of scene and enable me to develop other skills that will be useful for whatever job I do after my degree.

What does your typical working day look like? Is there an established routine or is every day different? Let me know in the comments below.